

    
      
          
            
  
pymbar

Python implementation of the multistate Bennett acceptance ratio (MBAR) [http://www.alchemistry.org/wiki/Multistate_Bennett_Acceptance_Ratio] method for estimating expectations and free energy differences
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Getting started


Installing pymbar

This documentation covers pymbar 4.  For the previous versions of pymbar, see: pymbar 3.0.7 [https://pymbar.readthedocs.io/en/3.0.7/].


conda (recommended)

The easiest way to install the pymbar release is via conda [http://conda.pydata.org]:

$ conda install -c conda-forge pymbar





You can also install pymbar from the Python package index [https://pypi.python.org/pypi/pymbar] using pip:

$ pip install pymbar







Development version

The development version can be installed directly from GitHub via pip:

$ pip install git+https://github.com/choderalab/pymbar.git





In beta testing, this is way to download pymbar 4.




Running the tests

Running the tests is a great way to verify that everything is working.

The test suite uses pytest [https://docs.pytest.org/], in addition to statsmodels [http://statsmodels.sourceforge.net/] and pytables [http://www.pytables.org/], which you can install via conda:

$ conda install pytest statsmodels





You can then run the tests from within the pymbar directory with:

$ pytest -v pymbar









            

          

      

      

    

  

    
      
          
            
  
Moving from pymbar version 3

Pymbar v4.0 contains several changes to improve the API longer
term. This, however, breaks the API used in 3.x and previous versions.

The main changes include:



	Making various estimators return dictionaries, not tuples, making it easier to return optional information requested at call time.


	Standardizing on snake_case for function names.


	Making the built-in solvers work to have an interface closer to like scipy solvers.








Snake case

Previous version of pymbar had mixed cases in functions. We have
standardized on snake case, and tried to make the method names that do
similar things more consistent.  Specific changes include:



	getFreeEnergyDifferences is now compute_free_energy_differences


	computeExpectations is now compute_expectations


	computeMultipleExpectations is now compute_multiple_expectations


	computePerturbedFreeEnergies is now compute_perturbed_free_energies


	computeEntropyAndEnthalpy is now compute_entropy_and_enthalpy







In the submodule timeseries:



	statisticalInefficiency is now statistical_inefficiency


	statisticalInefficiencyMltiple is now statistical_inefficiency_multiple


	integratedAutocorrelationTime is now integrated_autocorrelation_time


	normalizedFluctuationCorrelationFunction is now normalized_fluctuation_correlation_function


	normalizedFluctuationCorrelationFunctionMultiple is now normalized_fluctuation_correlation_function_multiple


	subsampleCorrelatedData is now subsample_correlated_data


	detectEquilibration is now detect_equilibration


	statisticalInefficiency_fft is now statistical_inefficiency_fft


	detectEquilibration_binary_search is now detect_equilibration_binary_search







Additionally, the other estimators such as the Bennett Acceptance
Ratio and exponential averaging/Zwanzig equation have different, more
consistent, call signatures.  All other estimators are now in the
other_estimators module.



	BAR is now bar


	EXP is now exp


	EXPGauss  is now exp_gauss


	PMF is now FEP and is greatly expanded (see Free energy surfaces with pymbar).









More consistent return functionality

Previously, different pymbar functions returned different information
as tuples. This became problematic when different functions returned
different types of information or different numbers of results. We
have thus consolidated on an API where all functions return a
dictionary.

As an example of both API changes of API, a short bit of code that
would load in data and calculate free energies, instead of being


Example of initializing MBAR in 3.0.7

mbar = MBAR(u_kn, N_k)
results, errors = mbar.getFreeEnergyDifferences()
print(results[0])
print(errors[0])







Would now be written as:


Example of initializing MBAR in 4.0

mbar = MBAR(u_kn, N_k)
results = mbar.compute_free_energy_differences()
print(results['Delta_f'])
print(results['dDelta_f'])







Other estimators including bar and exp also use a dictionary for return data.

The pymbar.timeseries submodule return patterns have not changed
in 4.0, however, and one should refer to the individual function
documentations for these return patterns.

results = bar(w_F, w_R)
print(f'Free energy difference is {results['Delta_f']:.3f} +- {results['Delta_f']:.3f} kT')


and:





results = exp(w_F)
print(f"Forward free energy difference is {results['Delta_f']:.3f} +- {results['dDelta_f']:.3f} kT)
results = exp(w_R)
print(f"Reverse free energy difference is {results['Delta_f']:.3f} +- {results['dDelta_f']:.3f} kT)







Simulation output

Previously, pymbar send all messages to standard out when verbose
was set to True.  pymbar now uses the logging module to output
this information.  If you wish to set messages, even if the verbose is
set to True, you will need to turn on logging for your script by
importing the logging module, and adding the lines:


Enabling logging in pybmar

import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)







pymbar generally uses the logging levels info for information
that previously was set to standard out.  Note that for a given method
to produce extensive information, even with logging, the verbose flag
still needs to be set to true.



Free energy surfaces

Previously, pymbar had a method PMF that estimated a free
energy from a series of umbrella samples using a histogram
approach. This was sematically problematin in two ways. First, the
term PMF (potential of mean force) is somewhat of an ambiguous term,
as the potential of mean force has some dependence on the coordinate
system in which the mean force is calculated. Since pymbar does
not calculate free energies by integration of mean force, this caused
some comfusion. To be clearer, we now have renamed the class
FES, for “free energy surface”.

The inclusion of a PMF function also created some confusion where some
authors referred to MBAR as a method to calculate a free energy
surface.  MBAR can only be used to take biased samples an estimate the
unbiased weight of each sample. In order to calculate a free energy
surface, one must also find a way to take the set of discrete weighted
samples and calculate a continous potential of mean force: see Shirts
and Ferguson [1] for a further discussion of the
separation of these two distinct tasks in the construction of free
energy surfaces. The pymbar code more cleanly separates the
calculation of biasing weights associated with umbrella samples, and
the estimation of the free energy surface.

For more information on the options for computing free energy surfaces
with the code, please see: Free energy surfaces with pymbar.



Acceleration

Previous version of pymbar include acceleration using explict C++
inner loops.  The C++ interface has become out of date. pymbar
optimization routines are now accelerated with jax. This provides
approximately a 2x speed up when performed on most CPUs, and
additional acceleration when a GPU can be detected (pymbar does not
install the appropriate GPU libraries). jax will be installed when
pymbar in installed via conda, but pymbar will function with
or without jax installed if there are issues with the JAX configuration.



Other changes


	Additional changes not affecting the API:
	
	Removed legacy old_mbar.py support.


	Moved testing framework to pytest, added significant numbers of tests.


	Improved code linting using black


	Bootstrapping for errors in free energies and expectations is now supported; see Strategies for solution for more information.


	Added a bar_overlap function to find overlap when using just bar


	Fixed an error in computing expectations of small numbers.


	Improved automated adaptive choice of samplers; see Strategies for solution for more information.


	Many instances of code cleanup.


	Improved docstring documentation.












            

          

      

      

    

  

    
      
          
            
  
Strategies for solution


Approaches to solving the MBAR equations

The multistate reweighting approach to calculate free energies can be
formulated in several ways.  The multistate reweighting equations are
a set of coupled, implicit equations for the free energies of K
states, given samples from these K states. If one can calculate the
energies of each of the K states, for each sample, then one can
solve for the K free energies satisfying the equations. The
solutions are unique only up to an overall constant, which pymbar
removes by setting the first free energy to zero to 0, leaving K-1.
free energies.

By rearrangement, this set of self-consistent equations can be written
as simultaneous roots to K equations.  This set of roots also turns
out to be the Jacobian of single maximum likelihood function of all
the free energies.  We then can find the MBAR solutions by either
maximization/minimization techiques, or by root finding.

Because the second derivative of the likelihood is always negative,
there is only one possivle solution. However, if there is poor
overlap, it is not uncommon that some of the optimal [image: f_k] could be
in extremely flat region of solution space, and therefore have
significant round-off errors resulting in slow or no convergence to the
solution, and low overlap can also lead to underflow and overflow
leading to crashed solutions.



scipy solvers

pymbar is set up to use the scipy.optimize.minimize() and
scipy.optimize.roots() functionality to perform this
minimization. We use only the gradient-based methods, as the
analytical gradient-based optimization is obtainable from the MBAR
equations.  Available scipy.optimize.minimize() methods include
L-BFGS-B, dogleg, CG, BFGS, Newton-CG, TNC, trust-ncg,
trust-krylov, trust-exact, and SLSQP. and
scipy.optimize.roots options are hybr and lm. Methods that
take a Hessian (dogleg, Newton-CG, trust-ncg, trust-krylov,
trust-exact) are passed the analytical Hessian.  Options can be
passed to each of these methods through the MBAR object
initialization interface.



Built-in solutions

In addition to the scipy solcers, pymbar also includes an
adaptive solver designed directly for MBAR.  At every step, the
adaptive solver calculates both the next iteration of the
self-consistent iterative formula presented in Shirts et
al. [2], and takes a Newton-Raphson
step.  In both cases, it calculates the gradients of the points
resulting after the two steps, and selects the move that makes the
magnitude of the gradient (i.e. the dot product of the gradient with
itself) smallest. Far from the solution, the self-consistent iteration
tends have the smaller gradient, while closer to the solution, the
Newton-Raphson step tends to have the smallest gradient. It always
chooses the self-consistent iteration for the first min_sc_iter
iterations, as if overlap is poor then Newton=Raphson iteration can
fail. min_sc_iter’s default is 2, but if one is starting from a
good guess for the free energies, one could start with
min_sc_iter=0



Constructing solver protocols

We have found that in general, different solvers have different
convergence properties and difference convergence behavior.  Even at
the same input tolerance level, different algorithms may not yield the
same result.  Additionally, accurate free energy estimates and other.
Although data with states that have significant overlap in
configuration states usually converge successfully with all simulation
algorithms, different algorithms succeed and fail on different “hard”
data sets. We have therefore constructed a very general interface to
allow the user to try different algorithms.

pymbar uses the concept of a “solver protocol”, where one applies
a series of methods one or multiple times.  In most cases, one will
never need to interact with this interface, because several different
protocols have already been implemented, and are accessible with
string keywords.  These are currently solver_protocl=default (also
the default) and solver_protocol=robust.

However, a user has the option of creating their own solver
protocol. Solver protocols are created as tuples of dictionaries,
where each dictionary is an optimization operation. The user has the
ability to continue with the resulting free energies each time, or
restarting back from the initialized free energies.

Take for example the default solver protocol, designed to give a high
accuracy answer in most circumstances:

solver_protocol = (
       dict(method="hybr", continuation=True),
       dict(method="adaptive", options=dict(min_sc_iter=0)),
)





Here, the first pass through optimization uses the scipy.optimize.roots function hybr,
and then if it is successful, continues on by running the built-in adaptive method, but
with no self-consistent iteration choices forced, as described above. If hybr fails,
it will still attempted to continue on with the resulting free energies, from whatever point it
ended up, issue a warning in case that adaptive is still unable to solve the result.

The options dictionary is passed onto the method, so whatever
options the scipy method uses it its documentation, it can be passed
on through this approach.  tol is a direct option to
scipy.optimize methods, and not passed on through the dictionary,
and thus is passed on directly in the solver protocol.

solver_protocol = (
        dict(method="hybr"),
        dict(method="L-BFGS-B", tol = 1.0e-5, continuation = True, options=dict(maxiter=1000)),
        dict(method="adaptive", tol = 1.0e-12, options=dict(maxiter=1000,min_sc_iter=5))
)





In this case, it would first use “hybr” with the default options and
tolerance and if successful, exit.  If not successful with “hybr”, it
would continue on to “L-BFGS-B”, with 1000 maximum iterations, and a
tolerance of [image: 10^{-5}] but would not use the results from the “hybr”
call. If “L-BFGS-B” was either successful or unsuccessful, it would
pass the results to “adaptive”, where it would choose the
self-consistent iteration the first five times, the numberof maximum
iteractions would be 1000, and the tolerance is [image: 10^{-12}].



Initialization

One can initialize the soution process in a number of ways. The
simplest is to start from all zeros, which is the default (and also
has keyword initialize=zeros). If the keyword f_k_initial is
used, then the length K.

Two other options for initialize are BAR and
average-enthalpies. average-enthalpies which approximates the
free energy of each state using the average enthalpy of each states,
which will be valid in the limit of no entropy differences beween
states.  initialize=BAR can be used whenever states are given in a
natural sequence of overlap, such that state 0 has the most
configurational overlap with state 1, state 1 has significant
configurational overlap with both states 0 and state 2, and so forth.
In the limit there is only overlap between neighboring states, MBAR
converges to give the same answer for [image: \Delta f_k = f_{k+1} - f_k]
that BAR gives. Although BAR also requires an iterative solution, it
is a single variable problem, and thus the K-1 BAR iterations that
need to be done are much faster than a single K-1 dimensional
problem. The initial input for state k in the solution process is
then [image: f_{k,initial} = \sum_j \Delta f_{j,BAR}]

Note that if both initialize and f_k_initial are selected, the
logic is somewhat different. Specifing f_k_initial overwrites
initialize=zeros, but initialize=BAR starts each application
of BAR with the (reduced) free energy difference between states k
and k+1 in from f_k_initial.



Calculating uncertainties

The MBAR equations contain analytical estimates of uncertainties.
These are essentially, however, the functional form is bit more
complicated, since they include modifications for error propagation
with implicit equations.

For free energies and expectations, one includes the analytical
uncertainties by adding the keyword compute_uncertainties=True.

In some cases, to peform additional error analysis, one might need
access to the covariance matrix of $ln f_k$. This is accessed in
results['Theta'], and included by setting compute_theta=True, or
if compute_uncertainties=True and uncertainty_method is not
bootstrap.

If uncertainty_method=bootstrap, then the analytical error
analysis is not performed, and instead bootstrap samples are pulled
from the original distribution.  Bootstrapping is done on each set of
$N_k$ samples from each K states individually, rather than on the
set as a whole, as the number of samples drawn from each state should
not change in the bootstrapping process, or it would be a different
process.

For bootstrapping to be used in calculating error estimates, the
MBAR object must be initialized with the keyword n_bootstraps,
which must be an integer greater than zero.  In general, 50–200
bootstraps should be used to estimate uncertainties with a good degree
of accuracy.

Note that users have complete control over the solver sequence for
bootstrapped solutions, using the same API as for solvers of the
original solution, with keyword bootstrap_solver_protocol.  As an
example, the default bootstrap protocol is:

bootstrap_solver_protocol = (dict(method="adaptive", tol = 1e-6, options=dict(min_sc_iter=0,maximum_iterations=100)))





The solutions for bootstrapped data should be relatively close to the
solutions for the original data set; additionally, they do not need to
be quite as accurate, since they are used to compute the variances.

Bootstrapped uncertainties (using uncertainty_method=bootstrap is
also available for all functions calculating expectations, but again
requires initialization with “n_bootstraps” when initalizing the MBAR
object.





            

          

      

      

    

  

    
      
          
            
  
The mbar module: MBAR

The mbar module contains the MBAR class, which implements the multistate Bennett acceptance ratio (MBAR) [http://www.alchemistry.org/wiki/Multistate_Bennett_Acceptance_Ratio] method [2].


	
class pymbar.MBAR(u_kn, N_k, maximum_iterations=10000, relative_tolerance=1e-07, verbose=False, initial_f_k=None, solver_protocol=None, initialize='zeros', x_kindices=None, n_bootstraps=0, bootstrap_solver_protocol=None, rseed=None)

	Multistate Bennett acceptance ratio method (MBAR) for the analysis of multiple equilibrium samples.

Notes

Note that this method assumes the data are uncorrelated.

Correlated data must be subsampled to extract uncorrelated (effectively independent) samples.

References

[1] Shirts MR and Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states.
J. Chem. Phys. 129:124105, 2008
http://dx.doi.org/10.1063/1.2978177

Initialize multistate Bennett acceptance ratio (MBAR) on a set of simulation data.

Upon initialization, the dimensionless free energies for all states are computed.
This may take anywhere from seconds to minutes, depending upon the quantity of data.
After initialization, the computed free energies may be obtained by a call to compute_free_energy_differences(),
or expectation at any state of interest can be computed by calls to compute_expectations().


	Parameters

	
	u_kn (np.ndarray, float, shape=(K, N_max)) – u_kn[k,n] is the reduced potential energy of uncorrelated
configuration n evaluated at state k.


	u_kln (np.ndarray, float, shape (K, L, N_max)) – If the simulation is in form u_kln[k,l,n] it is converted to u_kn format

u_kn = [ u_1(x_1) u_1(x_2) u_1(x_3) . . . u_1(x_n)
         u_2(x_1) u_2(x_2) u_2(x_3) . . . u_2(x_n)
                                    . . .
         u_k(x_1) u_k(x_2) u_k(x_3) . . . u_k(x_n)]








	N_k (np.ndarray, int, shape=(K)) – N_k[k] is the number of uncorrelated snapshots sampled from state k.
Some may be zero, indicating that there are no samples from that state.

We assume that the states are ordered such that the first N_k
are from the first state, the 2nd N_k the second state, and so
forth. This only becomes important for bar – MBAR does not
care which samples are from which state.  We should eventually
allow this assumption to be overwritten by parameters passed
from above, once u_kln is phased out.




	maximum_iterations (int, optional) – Set to limit the maximum number of iterations performed (default 1000)


	relative_tolerance (float, optional) – Set to determine the relative tolerance convergence criteria (default 1.0e-6)


	verbosity (bool, optional) – Set to True if verbose debug output is desired (default False)


	initial_f_k (np.ndarray, float, shape=(K), optional) – Set to the initial dimensionless free energies to use as a
guess (default None, which sets all f_k = 0)


	solver_protocol (list(dict), string or None, optional, default=None) – List of dictionaries to define a sequence of solver algorithms
and options used to estimate the dimensionless free energies.
See pymbar.mbar_solvers.solve_mbar() for details.  If None,
use the developers best guess at an appropriate algorithm.

if the string is “robust”, it tries “L-BFGS-B” and “adaptive”,
with relatively large numbers of iterations.

if “default” or “none”, it will use ‘hybr’ root solver, followed with
some rounds of Newton-Raphson if it fails to converge.

The default will try to solve with an adaptive solver algorithm
which alternates between self-consistent iteration and
Newton-Raphson, where the method with the smallest
gradient is chosen to improve numerical stability.




	initialize ('zeros' or 'BAR', optional, Default: 'zeros') – If equal to ‘BAR’, use bar between the pairwise state to
initialize the free energies.  Eventually, should specify a path;
for now, it just does it zipping up the states.

The ‘BAR’ option works best when the states are ordered such that adjacent states
maximize the overlap between states. It is up to the user
to arrange the states in such an order, or at least close to such an order.
If you are uncertain what the order of states should be, or if it does not make
sense to think of states as adjacent, then choose ‘zeros’.




	x_kindices (np.ndarray, int, shape=(K), default = [0,1,2,3,4...K]) – Describes which state is each sample x is from?  Usually doesn’t matter,
but it does for bar. As a default, we assume the samples are in K order
(the first N_k[0] samples are from the 0th state, the next N_k[1]
samples from the 1st state, and so forth.


	n_bootstraps (int) – How many bootstrap free energies will be computed? If None, no bootstraps will be computed.
computing uncertainties with bootstraps is only possible if this is > 0.
(default: None)


	bootstrap_solver_protocol (list(dict), string or None, optional, default=None) – We usually just do steps of adaptive sampling without. “robust” would be the backup.
Default: dict(method=”adaptive”, options=dict(min_sc_iter=0)),








Notes

The reduced potential energy u_kn[k,n] = u_k(x_{ln}), where the reduced potential energy u_l(x) is
defined (as in the text) by:
u_k(x) = beta_k [ U_k(x) + p_k V(x) + mu_k' n(x) ]
where

beta_k = 1/(k_B T_k) is the inverse temperature of condition k, where k_B is Boltzmann’s constant

U_k(x) is the potential energy function for state k

p_k is the pressure at state k (if an isobaric ensemble is specified)

V(x) is the volume of configuration x

mu_k is the M-vector of chemical potentials for the various species, if a (semi)grand ensemble is
specified, and ' denotes transpose

n(x) is the M-vector of numbers of the various molecular species for configuration x,
corresponding to the chemical potential components of mu_m.

x_n indicates that the samples are from k different simulations of the n states. These simulations
need only be a subset of the k states.

The configurations x_ln must be uncorrelated.  This can be ensured by subsampling a correlated timeseries
with a period larger than the statistical inefficiency, which can be estimated from the potential energy
timeseries {u_k(x_ln)}_{n=1}^{N_k} using the provided utility
pymbar.timeseries.statistical_inefficiency().
See the help for this function for more information.

Examples

>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)






	
property W_nk

	Retrieve the weight matrix W_nk from the MBAR algorithm.

Necessary because they are stored internally as log weights.


	Returns

	weights – NxK matrix of weights in the MBAR covariance and averaging formulas



	Return type

	np.ndarray, float, shape=(N, K)










	
compute_covariance_of_sums(d_ij, K, a)

	We wish to calculate the variance of a weighted sum of free energy differences.
for example var(\sum a_i df_i).

We explicitly lay out the calculations for four variables (where each variable
is a logarithm of a partition function), then generalize.

The uncertainty in the sum of two weighted differences is

var(a1(f_i1 - f_j1) + a2(f_i2 - f_j2)) =
    a1^2 var(f_i1 - f_j1) +
    a2^2 var(f_i2 - f_j2) +
    2 a1 a2 cov(f_i1 - f_j1, f_i2 - f_j2)
cov(f_i1 - f_j1, f_i2 - f_j2) =
    cov(f_i1,f_i2) -
    cov(f_i1,f_j2) -
    cov(f_j1,f_i2) +
    cov(f_j1,f_j2)





call:

f_i1 = a
f_j1 = b
f_i2 = c
f_j2 = d
a1^2 var(a-b) + a2^2 var(c-d) + 2a1a2 cov(a-b,c-d)





we want 2cov(a-b,c-d) = 2cov(a,c)-2cov(a,d)-2cov(b,c)+2cov(b,d),
since var(x-y) = var(x) + var(y) - 2cov(x,y),
then, 2cov(x,y) = -var(x-y) + var(x) + var(y). So, we get

2cov(a,c) = -var(a-c) + var(a) + var(c)
-2cov(a,d) = +var(a-d) - var(a) - var(d)
-2cov(b,c) = +var(b-c) - var(b) - var(c)
2cov(b,d) = -var(b-d) + var(b) + var(d)





adding up, finally :

2cov(a-b,c-d) = 2cov(a,c)-2cov(a,d)-2cov(b,c)+2cov(b,d) =
    - var(a-c) + var(a-d) + var(b-c) - var(b-d)

a1^2 var(a-b)+a2^2 var(c-d)+2a1a2cov(a-b,c-d) =
    a1^2 var(a-b)+a2^2 var(c-d)+a1a2 [-var(a-c)+var(a-d)+var(b-c)-var(b-d)]

var(a1(f_i1 - f_j1) + a2(f_i2 - f_j2)) =
    a1^2 var(f_i1 - f_j1) + a2^2 var(f_i2 - f_j2) + 2a1 a2 cov(f_i1 - f_j1, f_i2 - f_j2)
= a1^2 var(f_i1 - f_j1) + a2^2 var(f_i2 - f_j2) + a1 a2 [-var(f_i1 - f_i2) + var(f_i1 - f_j2) + var(f_j1-f_i2) - var(f_j1 - f_j2)]





assume two arrays of free energy differences, and and array of constant vectors a.
we want the variance var(\sum_k a_k (f_i,k - f_j,k)) Each set is separated from the other by an offset K
same process applies with the sum, with the single var terms and the pair terms


	Parameters

	
	d_ij (a matrix of standard deviations of the quantities f_i - f_j) – 


	K (The number of states in each 'chunk', has to be constant) – 


	outputs (KxK variance matrix for the sums or differences \sum a_i df_i) – 













	
compute_effective_sample_number(verbose=False)

	Compute the effective sample number of each state;
essentially, an estimate of how many samples are contributing to the average
at given state.  See pymbar/examples for a demonstration.

It also counts the efficiency of the sampling, which is simply the ratio
of the effective number of samples at a given state to the total number
of samples collected.  This is printed in verbose output, but is not
returned for now.


	Returns

	N_eff – estimated number of samples contributing to estimates at each
state i. An estimate to how many samples collected just at state
i would result in similar statistical efficiency as the MBAR
simulation. Valid for both sampled states (in which the weight
will be greater than N_k[i], and unsampled states.



	Return type

	np.ndarray, float, shape=(K)



	Parameters

	verbose (print out information about the effective number of samples) – 





Notes

Using Kish (1965) formula (Kish, Leslie (1965). Survey Sampling. New York: Wiley)

As the weights become more concentrated in fewer observations, the effective sample size shrinks.
from http://healthcare-economist.com/2013/08/22/effective-sample-size/

effective number of samples contributing to averages carried out at state i
    =  (\sum_{n=1}^N w_in)^2 / \sum_{n=1}^N w_in^2
    =  (\sum_{n=1}^N w_in^2)^-1





the effective sample number is most useful to diagnose when there are only a few samples
contributing to the averages.

Examples

>>> from pymbar import testsystems
>>> [x_kn, u_kln, N_k, s_n] = testsystems.HarmonicOscillatorsTestCase().sample()
>>> mbar = MBAR(u_kln, N_k)
>>> N_eff = mbar.compute_effective_sample_number()










	
compute_entropy_and_enthalpy(u_kn=None, uncertainty_method=None, verbose=False, warning_cutoff=1e-10)

	Decompose free energy differences into enthalpy and entropy differences.

Compute the decomposition of the free energy difference between
states 1 and N into reduced free energy differences, reduced potential
(enthalpy) differences, and reduced entropy (S/k) differences.


	Parameters

	
	u_kn (float, NxK array) – The energies of the state that are being used.


	uncertainty_method (str , optional) – Choice of method used to compute asymptotic covariance method, or None to use default
See help for computeAsymptoticCovarianceMatrix() for more information on various methods.
if method = “bootstrap” then uncertainty over bootstrap samples is used.
with bootstraps. (default: None)


	warning_cutoff (float, optional) – Warn if squared-uncertainty is negative and larger in magnitude than this number (default: 1.0e-10)






	Returns

	
	Results dictionary with the following keys


	’Delta_f’ (np.ndarray, float, shape=(K, K)) – results[‘Delta_f’] is the dimensionless free energy difference f_j - f_i


	’dDelta_f’ (np.ndarray, float, shape=(K, K)) – uncertainty in results[‘Delta_f’]


	’Delta_u’ (np.ndarray, float, shape=(K, K)) – results[‘Delta_u’] is the reduced potential energy difference u_j - u_i


	’dDelta_u’ (np.ndarray, float, shape=(K, K)) – uncertainty in results[‘Delta_u’]


	’Delta_s’ (np.ndarray, float, shape=(K, K)) – results[‘Delta_s’] is the reduced entropy difference S/k between states i and j (s_j - s_i)


	’dDelta_s’ (np.ndarray, float, shape=(K, K)) – uncertainty in results[‘Delta_s’]










Examples

>>> from pymbar import testsystems
>>> x_n, u_kn, N_k, s_n = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> results = mbar.compute_entropy_and_enthalpy()










	
compute_expectations(A_n, u_kn=None, output='averages', state_dependent=False, compute_uncertainty=True, uncertainty_method=None, warning_cutoff=1e-10, return_theta=False)

	Compute the expectation of an observable of a phase space function.

Compute the expectation of an observable of a single phase space
function A(x) at all states where potentials are generated.


	Parameters

	
	A_n (np.ndarray, float) – A_n (N_max np float64 array) - A_n[n] = A(x_n)


	u_kn (np.ndarray) – u_kn (energies of state of interest length N)
default is self.u_kn


	output (string, optional) – ‘averages’ outputs expectations of observables and ‘differences’ outputs
a matrix of differences in the observables.


	compute_uncertainty (bool, optional) – If False, the uncertainties will not be computed (default : True)


	uncertainty_method (string, optional) – Choice of method used to compute asymptotic covariance method,
or None to use default See help for _computeAsymptoticCovarianceMatrix()
for more information on various methods. if uncertainty_method = “bootstrap”,
then uncertainty over bootstrap samples is used. (default: None)


	warning_cutoff (float, optional) – Warn if squared-uncertainty is negative and larger in magnitude than this number (default: 1.0e-10)


	state_dependent (bool, whether the expectations are state-dependent.) – 






	Returns

	
	Results dictionary with the following keys


	’mu’ (np.ndarray, float) – if output is ‘averages’
A_i  (K np float64 array) -  A_i[i] is the estimate for the expectation of A(x) for state i.
if output is ‘differences’


	’sigma’ (np.ndarray, float) – dA_i  (K np float64 array) - dA_i[i] is uncertainty estimate (one standard deviation) for A_i[i]
or
dA_ij (K np float64 array) - dA_ij[i,j] is uncertainty estimate (one standard deviation) for the difference in A beteen i and j
or None, if compute_uncertainty is False.


	’Theta’ (((KxK np float64 array): Covariance matrix of log weights)










References

See Section IV of [1].

Examples

>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> A_n = x_n
>>> results = mbar.compute_expectations(A_n)
>>> A_n = u_kn[0,:]
>>> results = mbar.compute_expectations(A_n, output='differences')










	
compute_expectations_inner(A_n, u_ln, state_map, uncertainty_method=None, warning_cutoff=1e-10, return_theta=False)

	Compute the expectations of multiple observables of phase space functions in multiple states.

Compute the expectations of multiple observables of phase
space functions [A_0(x),A_1(x),…,A_i(x)] along with the
covariances of their estimates at multiple states.

Intended as an internal function to keep all the optimized and
robust expectation code in one place, but will leave it
open to allow for later modifications and uses.

It calculates all input observables at all states which are
specified by the list of states in the state list.


	Parameters

	
	A_n (np.ndarray, float, shape=(I, N)) – A_in[i,n] = A_i(x_n), the value of phase observable i for configuration n


	u_ln (np.ndarray, float, shape=(L, N)) – u_ln[l,n] is the reduced potential of configuration n at state l
if u_ln = None, we use self.u_kn


	state_map (np.ndarray, int, shape (2,NS) or shape(1,NS)) – If state_map has only one dimension where NS is the total number of states we want to simulate things
a.  The list will be of the form [[0,1,2],[0,1,1]]. This particular example indicates we want to output
the properties of three observables total: the first property A[0] at the 0th state, the 2nd property
A[1] at the 1th state, and the 2nd property A[1] at the 2nd state. This allows us to tailor our output to a
large number of different situations.


	uncertainty_method (string, optional) – Choice of method used to compute asymptotic covariance method, or None to use default
See help for _computeAsymptoticCovarianceMatrix() for more information on various methods.
The exception is the “bootstrap” option, which required n_boostraps being defined at initialization of MBAR.
(default: None)


	warning_cutoff (float, optional) – Warn if squared-uncertainty is negative and larger in magnitude than this number (default: 1.0e-10)


	return_theta (bool, optional) – Whether or not to return the theta matrix.  Can be useful for complicated differences of observables.






	Returns

	
	result_vals (dictionary)


	Keys in the result_vals dictionary


	’observables’ (np.ndarray, float, shape = (S)) – results_vals[‘observables’][i] is the estimate for the expectation of A_state_map[i](x) at the state specified by u_n[state_map[i],:]


	’Theta’ (np.ndarray, float, shape = (K+len(state_list), K+len(state_list)) the covariance matrix of log weights.)


	’Amin’ (np.ndarray, float, shape = (S), needed for reconstructing the covariance one level up.)


	’f’ (np.ndarray, float, shape = (K+len(state_list)), ‘free energies’ of the new states (i.e. ln (<A>-Amin+logfactor)) as the log form is easier to work with.)


	’bootstrapped_observables’ (np.ndarray, float, shape = (n_boostraps,S), array of the observables bootstrapped over random samples.)


	’bootstrapped_f’ (np.ndarray, float, shape = (n_boostraps,S), free energies ‘f’ bootstrapped over random samples.)










Notes

Situations this will be used for:


	Multiple observables, single state (called though compute_multiple_expectations)


	Single observable, multiple states (called through compute_expectations)


This has two cases : observables that don’t change with state, and observables that
do change with state.
For example, the set of energies at state k consist in energy function of state
1 evaluated at state 1, energies of state 2 evaluated at
state 2, and so forth.






	Computing only free energies at new states.




Examples

>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> A_n = np.array([x_n,x_n**2,x_n**3])
>>> u_n = u_kn[:2,:]
>>> state_map = np.array([[0,0],[1,0],[2,0],[2,1]],int)
>>> results = mbar.compute_expectations_inner(A_n, u_n, state_map)










	
compute_free_energy_differences(compute_uncertainty=True, uncertainty_method=None, warning_cutoff=1e-10, return_theta=False)

	Compute and return  the dimensionless free energy differences and uncertainties among all thermodynamic states.


	Parameters

	
	compute_uncertainty (bool, optional) – If False, the uncertainties will not be computed (default : True)


	uncertainty_method (string, optional) – Choice of method used to compute asymptotic covariance method,
or None to use default.  See help for _computeAsymptoticCovarianceMatrix()
for more information on various methods. (default : svd)
The exception is the “bootstrap” option, which requires n_boostraps being defined upon initialization of MBAR.


	warning_cutoff (float, optional) – Warn if squared-uncertainty is negative and larger in magnitude
than this number (default : 1.0e-10)


	return_theta (bool, optional) – Whether or not to return the theta matrix.  Can be useful for complicated differences.






	Returns

	
	Results dictionary with the following keys


	’Delta_f’ (np.ndarray, float, shape=(K, K)) – Deltaf_ij[i,j] is the estimated free energy difference


	’dDelta_f’ (np.ndarray, float, shape=(K, K)) – If compute_uncertainty==True,
dDeltaf_ij[i,j] is the estimated statistical uncertainty
(one standard deviation) in Deltaf_ij[i,j].  Otherwise not included.


	’Theta’ (np.ndarray, float, shape=(K, K)) – The theta_matrix if return_theta==True, otherwise not included.










Notes

Computation of the covariance matrix may take some time for large K.

The reported statistical uncertainty should, in the asymptotic limit, reflect one standard deviation for the normal distribution of the estimate.
The true free energy difference should fall within the interval [-df, +df] centered on the estimate 68% of the time, and within
the interval [-2 df, +2 df] centered on the estimate 95% of the time.
This will break down in cases where the number of samples is not large enough to reach the asymptotic normal limit.

See Section III of Reference [1].

Examples

>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> results = mbar.compute_free_energy_differences()










	
compute_multiple_expectations(A_in, u_n, compute_uncertainty=True, compute_covariance=False, uncertainty_method=None, warning_cutoff=1e-10, return_theta=False)

	Compute the expectations of multiple observables of phase space functions.

Compute the expectations of multiple observables of phase
space functions [A_0(x),A_1(x),…,A_i(x)] at a single state,
along with the error in the estimates and the uncertainty in
the estimates.  The state is specified by the choice of u_n,
which is the energy of the n samples evaluated at a the chosen
state.


	Parameters

	
	A_in (np.ndarray, float, shape=(I, k, N)) – A_in[i,n] = A_i(x_n), the value of phase observable i for configuration n at state of interest


	u_n (np.ndarray, float, shape=(N)) – u_n[n] is the reduced potential of configuration n at the state of interest


	compute_uncertainty (bool, optional, default=True) – If True, calculate the uncertainty


	compute_covariance (bool, optional, default=False) – If True, calculate the covariance


	uncertainty_method (string, optional) – Choice of method used to compute asymptotic covariance method, or None to use default
See help for computeAsymptoticCovarianceMatrix() for more information on various methods.
if method = “bootstrap” then uncertainty over bootstrap samples is used.
with bootstraps. (default: None)


	warning_cutoff (float, optional) – Warn if squared-uncertainty is negative and larger in magnitude than this number (default : 1.0e-10)






	Returns

	
	Results dictionary with the following keys


	’mu’ (np.ndarray, float, shape=(I)) – result_vals[‘mu’] is the estimate for the expectation of A_i(x) at the state specified by u_kn


	’sigma’ (np.ndarray, float, shape = (I)) – result_vals[‘sigma’] is the uncertainty in the expectation of A_state_map[i](x) at the state specified by u_n[state_map[i],:]
or None if compute_uncertainty is False


	’covariances’ (np.ndarray, float, shape=(I, I)) – result_vals[‘covariances’] is the COVARIANCE in the estimates of A_i[i] and A_i[j]: we can’t actually take a square root
or None if compute_covariance is False


	’Theta’ (np.ndarray, float, shape=(I, I), covariances of the log weights, useful for some additional calculations.)










Examples

>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> A_in = np.array([x_n,x_n**2,x_n**3])
>>> u_n = u_kn[0,:]
>>> results = mbar.compute_multiple_expectations(A_in, u_kn)










	
compute_overlap()

	Compute estimate of overlap matrix between the states.


	Parameters

	None – 



	Returns

	
	Results dictionary with the following keys


	’scalar’ (np.ndarray, float, shape=(K, K)) – One minus the largest nontrival eigenvalue (largest is 1 or -1)


	’eigenvalues’ (np.ndarray, float, shape=(K)) – The sorted (descending) eigenvalues of the overlap matrix.


	’matrix’ (np.ndarray, float, shape=(K, K)) – Estimated state overlap matrix : O[i,j] is an estimate
of the probability of observing a sample from state i in state j










Notes

W.T * W \approx \int (p_i p_j /\sum_k N_k p_k)^2 \sum_k N_k p_k dq^N
    = \int (p_i p_j /\sum_k N_k p_k) dq^N





Multiplying elementwise by N_i, the elements of row i give the probability
for a sample from state i being observed in state j.

Examples

>>> from pymbar import testsystems
>>> (x_kn, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> results = mbar.compute_overlap()










	
compute_perturbed_free_energies(u_ln, compute_uncertainty=True, uncertainty_method=None, warning_cutoff=1e-10)

	Compute the free energies for a new set of states.

Here, we desire the free energy differences among a set of new states, as well as the uncertainty estimates in these differences.


	Parameters

	
	u_ln (np.ndarray, float, shape=(L, Nmax)) – u_ln[l,n] is the reduced potential energy of uncorrelated
configuration n evaluated at new state k.  Can be completely indepednent of the original number of states.


	compute_uncertainty (bool, optional, default=True) – If False, the uncertainties will not be computed (default: True)


	uncertainty_method (string, optional) – Choice of method used to compute asymptotic covariance method, or None to use default
See help for computeAsymptoticCovarianceMatrix() for more information on various methods.
if method = “bootstrap” then uncertainty over bootstrap samples is used.
with bootstraps. (default: None)


	warning_cutoff (float, optional) – Warn if squared-uncertainty is negative and larger in magnitude than this number (default: 1.0e-10)






	Returns

	
	Results dictionary with the following entries.


	’Delta_f’ (np.ndarray, float, shape=(L, L)) – result_vals[‘Delta_f’] = f_j - f_i, the dimensionless free energy difference between new states i and j


	’dDelta_f’ (np.ndarray, float, shape=(L, L)) – result_vals[‘dDelta_f’] is the estimated statistical uncertainty in result_vals[‘Delta_f’]
or not included if compute_uncertainty is False










Examples

>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> results = mbar.compute_perturbed_free_energies(u_kn)










	
weights()

	Retrieve the weight matrix W_nk from the MBAR algorithm.

Necessary because they are stored internally as log weights.


	Returns

	weights – NxK matrix of weights in the MBAR covariance and averaging formulas



	Return type

	np.ndarray, float, shape=(N, K)
















            

          

      

      

    

  

    
      
          
            
  
Free energy surfaces with pymbar


Free energy surfces

pymbar can be used to estimate free energy surfaces using samples
from K biased simulations.  It is important to note that MBAR itself
is not enough to generate a free energy surface.  MBAR takes a set of
samples from K different states, and can compute the weight that
should be given to each sample in in the unbiased state, i.e. the
state in which one desires to compute the free energy surface. Thus,
there can be no MBAR estimator of the free energy surface; that would
consist only in a set of weighted delta functions.  This is done by
initializing the pymbar.FES class, which takes [image: u_{kn}] and [image: N_k]
matrices and passes them to MBAR.

The second step that needs to be carried out is to determine the best
approximation of the continuous function that the samples are
estimated from. pymbar.FES supports several methods to estimate
this continuous function.  generate_fes, given an initialized MBAR
object, a set of points, the energies at that point, and a method,
generates an object that contains the FES information.  The current
options are histogram, kde, and spline.  histogram behaves
as one might expect, creating a free energy surface as a histogram,
and refer to FES.rst for additional information. kde creates a
kernel density approximation, using the
sklearn.neighbors.KernelDensity function, and parameters can be
passed to that function using the kde_parameters keyword.
Finally, the spline method uses a maximum likelhood approach to
calculate the spline most consistent with the input data, using the
formalism presented in Shirts et al. [1].  The spline
functionality includes the ability to perform Monte Carlo sampling in
the spline parameters to generate confidence intervals for the points
in the spline curve.

histogram and kde methods can generate multidimesional free
energy surfaces, while splines for now is limited to a single free
energy surface.

The method get_fes return values of the free energy surface at the
specified coordinates, and when available, returns the uncertainties
in the values as well.

Examples parallel-tempering-2d and umbrella-sampling have been
rewnamed parallel-tempering-2dfes and `umbrella-sampling and
rewritten to demonstrate the new functionality.


	
class pymbar.FES(u_kn, N_k, verbose=False, mbar_options=None, timings=True, **kwargs)

	Methods for generating free energy surfaces (profile) with statistical uncertainties.

Notes

Note that this method assumes the data are uncorrelated.

Correlated data must be subsampled to extract uncorrelated (effectively independent) samples.

References

[1] Shirts MR and Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states.
J. Chem. Phys. 129:124105, 2008
http://dx.doi.org/10.1063/1.2978177

[2] Shirts MR and Ferguson AF. Statistically optimal continuous
free energy surfaces from umbrella sampling and multistate
reweighting
https://arxiv.org/abs/2001.01170

Initialize a free energy surface calculation by performing
multistate Bennett acceptance ratio (MBAR) on a set of
simulation data from umbrella sampling at K states.

Upon initialization, the dimensionless free energies for all
states are computed.  This may take anywhere from seconds to
minutes, depending upon the quantity of data.

This also creates an internal mbar object that is used to create
the free energy surface.


	Parameters

	
	u_kn (np.ndarray, float, shape=(K, N_max)) – u_kn[k,n] is the reduced potential energy of uncorrelated
configuration n evaluated at state k.


	N_k (np.ndarray, int, shape=(K)) – N_k[k] is the number of uncorrelated snapshots sampled from state k.
Some may be zero, indicating that there are no samples from that state.

We assume that the states are ordered such that the first N_k
are from the first state, the 2nd N_k the second state, and so
forth. This only becomes important for bar – MBAR does not
care which samples are from which state.  We should eventually
allow this assumption to be overwritten by parameters passed
from above, once u_kln is phased out.




	mbar_options (dict) – The following options supported by mbar (see MBAR documentation)

maximum_iterations : int, optional
relative_tolerance : float, optional
verbosity : bool, optional
initial_f_k : np.ndarray, float, shape=(K), optional
solver_protocol : list(dict) or None, optional, default=None
initialize : ‘zeros’ or ‘BAR’, optional, Default: ‘zeros’
x_kindices : array of ints, shape=(K), which state index each sample is from.










Examples

>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> fes = FES(u_kn, N_k)






	
generate_fes(u_n, x_n, fes_type='histogram', histogram_parameters=None, kde_parameters=None, spline_parameters=None, n_bootstraps=0, seed=-1)

	Given an intialized MBAR object, a set of points,
the desired energies at that point, and a method, generate
an object that contains the FES information.


	Parameters

	
	u_n (np.ndarray, float, shape=(N)) – u_n[n] is the reduced potential energy of snapshot n of state for which the FES is to be computed.
Often, it will be one of the states in of u_kn, used in initializing the FES object, but we want
to allow more generality.


	x_n (np.ndarray, float, shape=(N,D)) – x_n[n] is the d-dimensional coordinates of the samples, where D is the reduced dimensional space.


	fes_type (str) – options = ‘histogram’, ‘kde’, ‘spline’


	histogram_parameters (dictionary) – Input dictionary with the following keys:



	bin_edges: list of ndim np.ndarray, each array shaped ndum+1
	The bin edges. Compatible with bin_edges output of np.histogram.



	kde_parameters
	all the parameters from sklearn (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html). Defaults will be used if nothing changed.



	spline_parameters
	
	’spline_weights’
	which type of fit to use:
‘biasedstates’ - sum of log likelihood over all weighted states
‘unbiasedstate’ - log likelihood of the single unbiased state
‘simplesum’ - sum of log likelihoods from the biased simulation. Essentially equivalent to vFEP (York et al.)



	’optimization_algorithm’:
	’Custom-NR’ - a custom Newton-Raphson that is particularly fast for close data, but can fail
‘Newton-CG’ - scipy Newton-CG, only Hessian based method that works correctly because of data ordering.
‘         ‘ - scipy gradient based methods that work, but are generally slower (CG, BFGS, L-LBFGS-B, TNC, SLSQP)



	’fkbias’array of functions
	Return the Kth bias potential for each function



	’nspline’int
	Number of spline points



	’kdegree’int
	Degree of the spline.  Default is cubic (‘3’)



	’objective’string
	’ml’,’map’ # whether to fit the maximum likelihood or the maximum a posteriori















	n_bootstraps (int, 0 or > 1, Default: 0) – Number of bootstraps to create an uncertainty estimate. If 0, no bootstrapping is done. Required if
one uses uncertainty_method = ‘bootstrap’ in get_fes


	seed (int, Default = -1) – Set the randomization seed. Settting should get the
randomization (assuming the same calls are made in the
same order) to return the same numbers.  This is local to
this class and will not change any other random objects.






	Returns

	if ‘timings’ is set to True in __init__, returns the time taken to generate the FES



	Return type

	dict, optional





Notes


	
	fes_type = ‘histogram’:
	
	This method works by computing the free energy of localizing the system to each bin for the given potential by aggregating the log weights for the given potential.


	To estimate uncertainties, the NxK weight matrix W_nk is augmented to be Nx(K+nbins) in order to accomodate the normalized weights of states …


	the potential is given by u_n within each bin and infinite potential outside the bin.  The uncertainties with respect to the bin of lowest free energy are then computed in the standard way.












Examples

>>> # Generate some test data
>>> from pymbar import testsystems
>>> from pymbar import FES
>>> x_n, u_kn, N_k, s_n = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn',seed=0)
>>> # Select the potential we want to compute the FES for (here, condition 0).
>>> u_n = u_kn[0, :]
>>> # Sort into nbins equally-populated bins
>>> nbins = 10 # number of equally-populated bins to use
>>> import numpy as np
>>> N_tot = N_k.sum()
>>> x_n_sorted = np.sort(x_n) # unroll to n-indices
>>> bins = np.append(x_n_sorted[0::int(N_tot/nbins)], x_n_sorted.max()+0.1)
>>> bin_widths = bins[1:] - bins[0:-1]
>>> # Compute FES for these unequally-sized bins.
>>> fes = FES(u_kn, N_k)
>>> histogram_parameters = dict()
>>> histogram_parameters['bin_edges'] = [bins]
>>> _ = fes.generate_fes(u_n, x_n, fes_type='histogram', histogram_parameters = histogram_parameters)
>>> results = fes.get_fes(x_n)
>>> f_i = results['f_i']
>>> for i, x_n in enumerate(x_n):  
>>>     print(x_n, f_i[i])  
>>> mbar = fes.get_mbar()
>>> print(mbar.f_k)  
>>> print(N_k)  










	
get_confidence_intervals(xplot, plow, phigh, reference='zero')

	
	Parameters

	
	xplot – data points we want to plot at


	plow – lowest percentile


	phigh – highest percentile






	Returns

	
	plowndarray of float
	len(xplot) value of the parameter at plow percentile of the distribution at each x in xplot.



	phighndarray of float
	value of the parameter at phigh percentile of the distribution at each x in xplot.



	medianndarray of float
	value of the parameter at the median of the distribution at each x in xplot.



	valuesndarray of float
	shape [niterations//sample_every, len(xplot)] of the FES saved during the MCMC sampling at each input value of xplot.









	Return type

	Dictionary of results.  Contains










	
get_fes(x, reference_point='from-lowest', fes_reference=None, uncertainty_method=None)

	Returns values of the FES at the specified x points.


	Parameters

	
	x (numpy.ndarray of D dimensions, where D is the dimensionality of the FES defined.) – 


	reference_point (str, optional) – Method for reporting values and uncertainties (default : ‘from-lowest’)


	’from-lowest’ - the uncertainties in the free energy difference with lowest point on FES are reported


	’from-specified’ - same as from lowest, but from a user specified point


	’from-normalization’ - the normalization sum_i p_i = 1 is used to determine uncertainties spread out through the FES


	’all-differences’ - the nbins x nbins matrix df_ij of uncertainties in free energy differences is returned instead of df_i







	uncertainty_method (str, optional) – Method for computing uncertainties (default: None)


	fes_reference – an N-d point specifying the reference state. Ignored except with uncertainty method from_specified






	Returns

	
	‘f_i’np.ndarray, float, shape=(K)
	result_vals[‘f_i’][i] is the dimensionless free energy of the x_i point, relative to the reference point



	’df_i’np.ndarray, float, shape=(K)
	result_vals[‘df_i’][i] is the uncertainty in the difference of x_i with respect to the reference point
Only included if uncertainty_method is not None









	Return type

	dict










	
get_information_criteria(type='akaike')

	returns the Akaike or Bayesian Informatiton Criteria for the model if it exists.


	Parameters

	type (string) – either ‘Akaike’ (or ‘akaike’ or ‘aic’) or ‘Bayesian’ (or ‘bayesian’ or ‘bic’)



	Returns

	value of information criteria



	Return type

	float










	
get_kde()

	return the KernelDensity object if it exists.


	Return type

	sklearn KernelDensity object










	
get_mbar()

	return the MBAR object being used by the FES


	Return type

	MBAR object










	
get_mc_data()

	convenience function to retrieve MC data


	Parameters

	None – 



	Returns

	samples : samples of the parameters with size [len(parameters) times niterations/sample_every]
logposteriors : log posteriors (which might be defined with respect to some reference) as a time series size [# points]
mc_parameters : dictionary of parameters that were run with (see definitons in sample_parameter_distrbution)
acceptance_ratio : overall acceptance ratio of the MC chain
nequil : the start of the “equilibrated” data set (i.e. nequil-1 is the number that werer thrown out)
g_logposterior : statistical efficiency of the log posterior
g_parameters : statistical efficiency of the parametere
g : statistical efficiency used for subsampling



	Return type

	dict










	
sample_parameter_distribution(x_n, mc_parameters=None, decorrelate=True, verbose=True)

	Samples the valus of the spline parameters with MC.


	Parameters

	
	x_n (numpy.ndarray of D dimensions) – D is the dimensionality of the FES defined.


	mc_parameters (dictionary) – 
	niteratonsint
	number of iterations of the Monte Carlo procedure



	fraction_changefloat
	which fraction of the range of input parameters is used to make new MC moves.



	sample_everyint
	the frequency in steps at which the MC timeseries is saved.



	print_everyint
	the frequency in steps aat which the MC timeseries is saved to log.



	logpriorfunction,
	the function of parameters, the Function must take a single argument, an array the size of parameters
in in the same order as a used by the internal functions.








	decorrelate (boolean) – Whether to decorrelate the time series of output points


	verbose (boolean) – Whether to print high levels of information to the logger






	Return type

	None

















            

          

      

      

    

  

    
      
          
            
  
Other estimators

pymbar implements other reweighting estimators, specifically the
Bennett Acceptance Ratio, exponential averaging, and a Gaussian
approximation to exponential averaging.

Please reference the following if you use this code in your research:

[1] Shirts MR and Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states.
J. Chem. Phys. 129:124105, 2008.  http://dx.doi.org/10.1063/1.2978177

This module contains implementations of


	bar - bidirectional estimator for free energy differences / Bennett acceptance ratio estimator


	exp - unidirectional estimator for free energy differences based on Zwanzig relation / exponential averaging


	exp_gauss - unidirectional estimator for free energy differences based on Zwanzig relation / exponential averaging, assuming the distribution is Gaussian.





	
pymbar.other_estimators.bar(w_F, w_R, DeltaF=0.0, compute_uncertainty=True, uncertainty_method='BAR', maximum_iterations=500, relative_tolerance=1e-12, verbose=False, method='false-position', iterated_solution=True)

	Compute free energy difference using the Bennett acceptance ratio (BAR) method.


	Parameters

	
	w_F (np.ndarray) – w_F[t] is the forward work value from snapshot t.
t = 0…(T_F-1)  Length T_F is deduced from vector.


	w_R (np.ndarray) – w_R[t] is the reverse work value from snapshot t.
t = 0…(T_R-1)  Length T_R is deduced from vector.


	DeltaF (float, optional, default=0.0) – DeltaF can be set to initialize the free energy difference with a guess


	compute_uncertainty (bool, optional, default=True) – if False, only the free energy is returned


	uncertainty_method (string, optional, default=''BAR'') – There are two possible uncertainty estimates for BAR.  One agrees with MBAR for two states exactly,
and is indicated by “MBAR”. The other estimator, which is the one originally derived for BAR, only
agrees with MBAR in the limit of good overlap, and is designated ‘BAR’
See code comments below for derivations of the two methods.


	maximum_iterations (int, optional, default=500) – Can be set to limit the maximum number of iterations performed


	relative_tolerance (float, optional, default=1E-11) – Can be set to determine the relative tolerance convergence criteria (defailt 1.0e-11)


	verbose (bool) – Should be set to True if verbse debug output is desired (default False)


	method (str, optional, defualt='false-position') – Choice of method to solve bar nonlinear equations: one of ‘bisection’, ‘self-consistent-iteration’ or ‘false-position’ (default : ‘false-position’).


	iterated_solution (bool, optional, default=True) – whether to fully solve the optimized bar equation to consistency, or to stop after one step, to be
equivalent to transition matrix sampling.






	Returns

	
	‘Delta_f’float
	Free energy difference



	’dDelta_f’float
	Estimated standard deviation of free energy difference









	Return type

	dict





References

[1] Shirts MR, Bair E, Hooker G, and Pande VS. Equilibrium free energies from nonequilibrium
measurements using maximum-likelihood methods. PRL 91(14):140601, 2003.

Notes

The false position method is used to solve the implicit equation.

Examples

Compute free energy difference between two specified samples of work values.

>>> from pymbar import testsystems
>>> [w_F, w_R] = testsystems.gaussian_work_example(mu_F=None, DeltaF=1.0, seed=0)
>>> results = bar(w_F, w_R)
>>> print('Free energy difference is {:.3f} +- {:.3f} kT'.format(results['Delta_f'], results['dDelta_f']))
Free energy difference is 1.088 +- 0.050 kT





Test completion of various other schemes.

>>> results = bar(w_F, w_R, method='self-consistent-iteration')
>>> results = bar(w_F, w_R, method='false-position')
>>> results = bar(w_F, w_R, method='bisection')










	
pymbar.other_estimators.bar_overlap(w_F, w_R)

	Compute overlap between forward and backward ensembles (using MBAR definition of overlap)


	Parameters

	
	w_F (np.ndarray) – w_F[t] is the forward work value from snapshot t.
t = 0…(T_F-1)  Length T_F is deduced from vector.


	w_R (np.ndarray) – w_R[t] is the reverse work value from snapshot t.
t = 0…(T_R-1)  Length T_R is deduced from vector.






	Returns

	overlap – The overlap: 0 denotes no overlap, 1 denotes complete overlap



	Return type

	float










	
pymbar.other_estimators.bar_zero(w_F, w_R, DeltaF)

	A function that when zeroed is equivalent to the solution of
the Bennett acceptance ratio.

from http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.91.140601


D_F = M + w_F - Delta F
D_R = M + w_R - Delta F




we want:


sum_N_F (1+exp(D_F))^-1 = sum N_R N_R <(1+exp(-D_R))^-1>
ln sum N_F (1+exp(D_F))^-1>_F = ln sum N_R exp((1+exp(-D_R))^(-1)>_R
ln sum N_F (1+exp(D_F))^-1>_F - ln sum N_R exp((1+exp(-D_R))^(-1)>_R = 0





	Parameters

	
	w_F (np.ndarray) – w_F[t] is the forward work value from snapshot t.
t = 0…(T_F-1)  Length T_F is deduced from vector.


	w_R (np.ndarray) – w_R[t] is the reverse work value from snapshot t.
t = 0…(T_R-1)  Length T_R is deduced from vector.


	DeltaF (float) – Our current guess






	Returns

	fzero – a variable that is zeroed when DeltaF satisfies bar.



	Return type

	float





Examples

Compute free energy difference between two specified samples of work values.

>>> from pymbar import testsystems
>>> [w_F, w_R] = testsystems.gaussian_work_example(mu_F=None, DeltaF=1.0, seed=0)
>>> DeltaF = bar_zero(w_F, w_R, 0.0)










	
pymbar.other_estimators.exp(w_F, compute_uncertainty=True, is_timeseries=False)

	Estimate free energy difference using one-sided (unidirectional) exponential averaging (EXP).


	Parameters

	
	w_F (np.ndarray, float) – w_F[t] is the forward work value from snapshot t.  t = 0…(T-1)  Length T is deduced from vector.


	compute_uncertainty (bool, optional, default=True) – if False, will disable computation of the statistical uncertainty (default: True)


	is_timeseries (bool, default=False) – if True, correlation in data is corrected for by estimation of statisitcal inefficiency (default: False)
Use this option if you are providing correlated timeseries data and have not subsampled the data to produce uncorrelated samples.






	Returns

	
	‘Delta_f’ (float) – Free energy difference


	’dDelta_f’ (float) – Estimated standard deviation of free energy difference










Notes

If you are prodividing correlated timeseries data, be sure to set the ‘timeseries’ flag to True

Examples

Compute the free energy difference given a sample of forward work values.

>>> from pymbar import testsystems
>>> [w_F, w_R] = testsystems.gaussian_work_example(mu_F=None, DeltaF=1.0, seed=0)
>>> results = exp(w_F)
>>> print('Forward free energy difference is {:.3f} +- {:.3f} kT'.format(results['Delta_f'], results['dDelta_f']))
Forward free energy difference is 1.088 +- 0.076 kT
>>> results = exp(w_R)
>>> print('Reverse free energy difference is {:.3f} +- {:.3f} kT'.format(results['Delta_f'], results['dDelta_f']))
Reverse free energy difference is -1.073 +- 0.082 kT










	
pymbar.other_estimators.exp_gauss(w_F, compute_uncertainty=True, is_timeseries=False)

	Estimate free energy difference using gaussian approximation to one-sided (unidirectional) exponential averaging.


	Parameters

	
	w_F (np.ndarray, float) – w_F[t] is the forward work value from snapshot t.  t = 0…(T-1)  Length T is deduced from vector.


	compute_uncertainty (bool, optional, default=True) – if False, will disable computation of the statistical uncertainty (default: True)


	is_timeseries (bool, default=False) – if True, correlation in data is corrected for by estimation of statisitcal inefficiency (default: False)
Use this option if you are providing correlated timeseries data and have not subsampled the data to
produce uncorrelated samples.






	Returns

	
	‘Delta_f’float
	Free energy difference between the two states



	’dDelta_f’float
	Estimated standard deviation of free energy difference between the two states









	Return type

	Results dictionary with keys





Notes

If you are providing correlated timeseries data, be sure to set the ‘timeseries’ flag to True

Examples

Compute the free energy difference given a sample of forward work values.

>>> from pymbar import testsystems
>>> [w_F, w_R] = testsystems.gaussian_work_example(mu_F=None, DeltaF=1.0, seed=0)
>>> results = exp_gauss(w_F)
>>> print('Forward Gaussian approximated free energy difference is {:.3f} +- {:.3f} kT'.format(results['Delta_f'], results['dDelta_f']))
Forward Gaussian approximated free energy difference is 1.049 +- 0.089 kT
>>> results = exp_gauss(w_R)
>>> print('Reverse Gaussian approximated free energy difference is {:.3f} +- {:.3f} kT'.format(results['Delta_f'], results['dDelta_f']))
Reverse Gaussian approximated free energy difference is -1.073 +- 0.080 kT












            

          

      

      

    

  

    
      
          
            
  
The timeseries module pymbar.timeseries

The pymbar.timeseries module contains tools for dealing with timeseries data.
The MBAR [http://www.alchemistry.org/wiki/Multistate_Bennett_Acceptance_Ratio] method is only applicable to
uncorrelated samples from probability distributions, so we provide a number of tools that can be used to decorrelate
simulation data.


Automatically identifying the equilibrated production region

Most simulations start from initial conditions that are highly unrepresentative of equilibrated samples that occur
late in the simulation.
We can improve our estimates by discarding these initial regions to “equilibration” (also known as “burn-in”).
We recommend a simple scheme described in Ref. [3], which
identifies the production region as the final contiguous region containing the largest number of uncorrelated samples.
This scheme is implemented in the detect_equilibration() method:

from pymbar import timeseries
t0, g, Neff_max = timeseries.detect_equilibration(A_t) # compute indices of uncorrelated timeseries
A_t_equil = A_t[t0:]
indices = timeseries.subsample_correlated_data(A_t_equil, g=g)
A_n = A_t_equil[indices]





In this example, the detect_equilibration() method is used on the correlated timeseries A_t to identify the
sample index corresponding to the beginning of the production region, t_0, the statistical inefficiency of the
production region [t0:], g, and the effective number of uncorrelated samples in the production
region, Neff_max.
The production (equilibrated) region of the timeseries is extracted as A_t_equil and then subsampled using
the subsample_correlated_data() method with the provided statistical inefficiency g.
Finally, the decorrelated samples are stored in A_n.

Note that, by default, the statistical inefficiency is computed for every time origin in a call to
detect_equilibration(), which can be slow.
If your dataset is more than a few hundred samples, you may want to evaluate only every nskip samples as potential
time origins.
This may result in discarding slightly more data than strictly necessary, but may not have a significant impact if the
timeseries is long.

nskip = 10 # only try every 10 samples for time origins
t0, g, Neff_max = timeseries.detect_equilibration(A_t, nskip=nskip)







Subsampling timeseries data

If there is no need to discard the initial transient to equilibration, the subsample_correlated_data() method can be
used directly to identify an effectively uncorrelated subset of data.

from pymbar import timeseries
indices = timeseries.subsample_correlated_data(A_t_equil)
A_n = A_t_equil[indices]





Here, the statistical inefficiency g is computed automatically.



Other utility timeseries functions

A number of other useful functions for computing autocorrelation functions from one or more timeseries sampled from the
same process are also provided.

A module for extracting uncorrelated samples from correlated timeseries data.

This module provides various tools that allow one to examine the correlation functions and
integrated autocorrelation times in correlated timeseries data, compute statistical inefficiencies,
and automatically extract uncorrelated samples for data analysis.

Please reference the following if you use this code in your research:

[1] Shirts MR and Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states.
J. Chem. Phys. 129:124105, 2008
http://dx.doi.org/10.1063/1.2978177

[2] J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill. Use of the weighted
histogram analysis method for the analysis of simulated and parallel tempering simulations.
JCTC 3(1):26-41, 2007.


	
pymbar.timeseries.detect_equilibration(A_t, fast=True, nskip=1)

	Automatically detect equilibrated region of a dataset using a heuristic that maximizes number of effectively uncorrelated samples.


	Parameters

	
	A_t (np.ndarray) – timeseries


	nskip (int, optional, default=1) – number of samples to sparsify data by in order to speed equilibration detection






	Returns

	
	t (int) – start of equilibrated data


	g (float) – statistical inefficiency of equilibrated data


	Neff_max (float) – number of uncorrelated samples










Notes

If your input consists of some period of equilibration followed by
a constant sequence, this function treats the trailing constant sequence
as having Neff = 1.

Examples

Determine start of equilibrated data for a correlated timeseries.

>>> from pymbar import testsystems
>>> A_t = testsystems.correlated_timeseries_example(N=1000, tau=5.0) # generate a test correlated timeseries
>>> [t, g, Neff_max] = detect_equilibration(A_t) # compute indices of uncorrelated timeseries





Determine start of equilibrated data for a correlated timeseries with a shift.

>>> from pymbar import testsystems
>>> A_t = testsystems.correlated_timeseries_example(N=1000, tau=5.0) + 2.0 # generate a test correlated timeseries
>>> B_t = testsystems.correlated_timeseries_example(N=10000, tau=5.0) # generate a test correlated timeseries
>>> C_t = np.concatenate([A_t, B_t])
>>> [t, g, Neff_max] = detect_equilibration(C_t, nskip=50) # compute indices of uncorrelated timeseries










	
pymbar.timeseries.detect_equilibration_binary_search(A_t, bs_nodes=10)

	Automatically detect equilibrated region of a dataset using a heuristic that maximizes number of effectively uncorrelated samples.


	Parameters

	
	A_t (np.ndarray) – timeseries


	bs_nodes (int > 4) – number of geometrically distributed binary search nodes






	Returns

	
	t (int) – start of equilibrated data


	g (float) – statistical inefficiency of equilibrated data


	Neff_max (float) – number of uncorrelated samples










Notes

Finds the discard region (t) by a binary search on the range of
possible lagtime values, with logarithmic spacings.  This will give
a local maximum.  The global maximum is not guaranteed, but will
likely be found if the N_eff[t] varies smoothly.






	
pymbar.timeseries.integrated_autocorrelation_time(A_n, B_n=None, fast=False, mintime=3)

	Estimate the integrated autocorrelation time.


See also

statisticalInefficiency








	
pymbar.timeseries.integrated_autocorrelation_timeMultiple(A_kn, fast=False)

	Estimate the integrated autocorrelation time from multiple timeseries.


See also

statistical_inefficiency_multiple








	
pymbar.timeseries.normalized_fluctuation_correlation_function(A_n, B_n=None, N_max=None, norm=True)

	Compute the normalized fluctuation (cross) correlation function of (two) stationary timeseries.

C(t) = (<A(t) B(t)> - <A><B>) / (<AB> - <A><B>)

This may be useful in diagnosing odd time-correlations in timeseries data.


	Parameters

	
	A_n (np.ndarray) – A_n[n] is nth value of timeseries A.  Length is deduced from vector.


	B_n (np.ndarray) – B_n[n] is nth value of timeseries B.  Length is deduced from vector.


	N_max (int, default=None) – if specified, will only compute correlation function out to time lag of N_max


	norm (bool, optional, default=True) – if False will return the unnormalized correlation function D(t) = <A(t) B(t)>






	Returns

	C_n – C_n[n] is the normalized fluctuation auto- or cross-correlation function for timeseries A(t) and B(t).



	Return type

	np.ndarray





Notes

The same timeseries can be used for both A_n and B_n to get the autocorrelation statistical inefficiency.
This procedure may be slow.
The statistical error in C_n[n] will grow with increasing n.  No effort is made here to estimate the uncertainty.

References

[1] J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill. Use of the weighted
histogram analysis method for the analysis of simulated and parallel tempering simulations.
JCTC 3(1):26-41, 2007.

Examples

Estimate normalized fluctuation correlation function.

>>> from pymbar import testsystems
>>> A_t = testsystems.correlated_timeseries_example(N=10000, tau=5.0)
>>> C_t = normalized_fluctuation_correlation_function(A_t, N_max=25)










	
pymbar.timeseries.normalized_fluctuation_correlation_function_multiple(A_kn, B_kn=None, N_max=None, norm=True, truncate=False)

	Compute the normalized fluctuation (cross) correlation function of (two) timeseries from multiple timeseries samples.

C(t) = (<A(t) B(t)> - <A><B>) / (<AB> - <A><B>)
This may be useful in diagnosing odd time-correlations in timeseries data.


	Parameters

	
	A_kn (Python list of numpy arrays) – A_kn[k] is the kth timeseries, and A_kn[k][n] is nth value of timeseries k.  Length is deduced from arrays.


	B_kn (Python list of numpy arrays) – B_kn[k] is the kth timeseries, and B_kn[k][n] is nth value of timeseries k.  B_kn[k] must have same length as A_kn[k]


	N_max (int, optional, default=None) – if specified, will only compute correlation function out to time lag of N_max


	norm (bool, optional, default=True) – if False, will return unnormalized D(t) = <A(t) B(t)>


	truncate (bool, optional, default=False) – if True, will stop calculating the correlation function when it goes below 0






	Returns

	C_n[n] – The normalized fluctuation auto- or cross-correlation function for timeseries A(t) and B(t).



	Return type

	np.ndarray





Notes

The same timeseries can be used for both A_n and B_n to get the autocorrelation statistical inefficiency.
This procedure may be slow.
The statistical error in C_n[n] will grow with increasing n.  No effort is made here to estimate the uncertainty.

References

[1] J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill. Use of the weighted
histogram analysis method for the analysis of simulated and parallel tempering simulations.
JCTC 3(1):26-41, 2007.

Examples

Estimate a portion of the normalized fluctuation autocorrelation function from multiple timeseries of different length.

>>> from pymbar import testsystems
>>> N_k = [1000, 2000, 3000, 4000, 5000]
>>> tau = 5.0 # exponential relaxation time
>>> A_kn = [ testsystems.correlated_timeseries_example(N=N, tau=tau) for N in N_k ]
>>> C_n = normalized_fluctuation_correlation_function_multiple(A_kn, N_max=25)










	
pymbar.timeseries.statistical_inefficiency(A_n, B_n=None, fast=False, mintime=3, fft=False)

	Compute the (cross) statistical inefficiency of (two) timeseries.


	Parameters

	
	A_n (np.ndarray, float) – A_n[n] is nth value of timeseries A.  Length is deduced from vector.


	B_n (np.ndarray, float, optional, default=None) – B_n[n] is nth value of timeseries B.  Length is deduced from vector.
If supplied, the cross-correlation of timeseries A and B will be estimated instead of the
autocorrelation of timeseries A.


	fast (bool, optional, default=False) – f True, will use faster (but less accurate) method to estimate correlation
time, described in Ref. [1] (default: False).  This is ignored
when B_n=None and fft=True.


	mintime (int, optional, default=3) – minimum amount of correlation function to compute (default: 3)
The algorithm terminates after computing the correlation time out to mintime when the
correlation function first goes negative.  Note that this time may need to be increased
if there is a strong initial negative peak in the correlation function.


	fft (bool, optional, default=False) – If fft=True and B_n=None, then use the fft based approach, as
implemented in statistical_inefficiency_fft().






	Returns

	g – g is the estimated statistical inefficiency (equal to 1 + 2 tau, where tau is the correlation time).
We enforce g >= 1.0.



	Return type

	np.ndarray,





Notes

The same timeseries can be used for both A_n and B_n to get the autocorrelation statistical inefficiency.
The fast method described in Ref [1] is used to compute g.

References

[1] J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill. Use of the weighted
histogram analysis method for the analysis of simulated and parallel tempering simulations.
JCTC 3(1):26-41, 2007.

Examples

Compute statistical inefficiency of timeseries data with known correlation time.

>>> from pymbar.testsystems import correlated_timeseries_example
>>> A_n = correlated_timeseries_example(N=100000, tau=5.0)
>>> g = statistical_inefficiency(A_n, fast=True)










	
pymbar.timeseries.statistical_inefficiency_fft(A_n, mintime=3)

	Compute the (cross) statistical inefficiency of (two) timeseries.


	Parameters

	
	A_n (np.ndarray, float) – A_n[n] is nth value of timeseries A.  Length is deduced from vector.


	mintime (int, optional, default=3) – minimum amount of correlation function to compute (default: 3)
The algorithm terminates after computing the correlation time out to mintime when the
correlation function first goes negative.  Note that this time may need to be increased
if there is a strong initial negative peak in the correlation function.






	Returns

	g – g is the estimated statistical inefficiency (equal to 1 + 2 tau, where tau is the correlation time).
We enforce g >= 1.0.



	Return type

	np.ndarray,





Notes

The same timeseries can be used for both A_n and B_n to get the autocorrelation statistical inefficiency.
The fast method described in Ref [1] is used to compute g.

References


	[1] J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill. Use of the weighted
	histogram analysis method for the analysis of simulated and parallel tempering simulations.
JCTC 3(1):26-41, 2007.










	
pymbar.timeseries.statistical_inefficiency_multiple(A_kn, fast=False, return_correlation_function=False)

	Estimate the statistical inefficiency from multiple stationary timeseries (of potentially differing lengths).


	Parameters

	
	A_kn (list of np.ndarrays) – A_kn[k] is the kth timeseries, and A_kn[k][n] is nth value of timeseries k.  Length is deduced from arrays.


	fast (bool, optional, default=False) – f True, will use faster (but less accurate) method to estimate correlation
time, described in Ref. [1] (default: False)


	return_correlation_function (bool, optional, default=False) – if True, will also return estimates of normalized fluctuation correlation function that were computed (default: False)






	Returns

	
	g (np.ndarray,) – g is the estimated statistical inefficiency (equal to 1 + 2 tau, where tau is the correlation time).
We enforce g >= 1.0.


	Ct (list (of tuples)) – Ct[n] = (t, C) with time t and normalized correlation function estimate C is returned as well if return_correlation_function is set to True










Notes

The autocorrelation of the timeseries is used to compute the statistical inefficiency.
The normalized fluctuation autocorrelation function is computed by averaging the unnormalized raw correlation functions.
The fast method described in Ref [1] is used to compute g.

References


	[1] J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill. Use of the weighted
	histogram analysis method for the analysis of simulated and parallel tempering simulations.
JCTC 3(1):26-41, 2007.





Examples

Estimate statistical efficiency from multiple timeseries of different lengths.

>>> from pymbar import testsystems
>>> N_k = [1000, 2000, 3000, 4000, 5000]
>>> tau = 5.0 # exponential relaxation time
>>> A_kn = [ testsystems.correlated_timeseries_example(N=N, tau=tau) for N in N_k ]
>>> g = statistical_inefficiency_multiple(A_kn)





Also return the values of the normalized fluctuation autocorrelation function that were computed.

>>> [g, Ct] = statistical_inefficiency_multiple(A_kn, return_correlation_function=True)










	
pymbar.timeseries.subsample_correlated_data(A_t, g=None, fast=False, conservative=False, verbose=False)

	Determine the indices of an uncorrelated subsample of the data.


	Parameters

	
	A_t (np.ndarray) – A_t[t] is the t-th value of timeseries A(t).  Length is deduced from vector.


	g (float, optional) – if provided, the statistical inefficiency g is used to subsample the timeseries – otherwise it will be computed (default: None)


	fast (bool, optional, default=False) – fast can be set to True to give a less accurate but very quick estimate (default: False)


	conservative (bool, optional, default=False) – if set to True, uniformly-spaced indices are chosen with interval ceil(g), where
g is the statistical inefficiency.  Otherwise, indices are chosen non-uniformly with interval of
approximately g in order to end up with approximately T/g total indices


	verbose (bool, optional, default=False) – if True, some output is printed






	Returns

	indices – the indices of an uncorrelated subsample of the data



	Return type

	list of int





Notes

The statistical inefficiency is computed with the function computeStatisticalInefficiency().

Examples

Subsample a correlated timeseries to extract an effectively uncorrelated dataset.

>>> from pymbar import testsystems
>>> A_t = testsystems.correlated_timeseries_example(N=10000, tau=5.0) # generate a test correlated timeseries
>>> indices = subsample_correlated_data(A_t) # compute indices of uncorrelated timeseries
>>> A_n = A_t[indices] # extract uncorrelated samples





Extract uncorrelated samples from multiple timeseries data from the same process.

>>> # Generate multiple correlated timeseries data of different lengths.
>>> T_k = [1000, 2000, 3000, 4000, 5000]
>>> K = len(T_k) # number of timeseries
>>> tau = 5.0 # exponential relaxation time
>>> A_kt = [ testsystems.correlated_timeseries_example(N=T, tau=tau) for T in T_k ] # A_kt[k] is correlated timeseries k
>>> # Estimate statistical inefficiency from all timeseries data.
>>> g = statistical_inefficiency_multiple(A_kt)
>>> # Count number of uncorrelated samples in each timeseries.
>>> N_k = np.array([ len(subsample_correlated_data(A_t, g=g)) for A_t in A_kt ]) # N_k[k] is the number of uncorrelated samples in timeseries k
>>> N = N_k.sum() # total number of uncorrelated samples
>>> # Subsample all trajectories to produce uncorrelated samples
>>> A_kn = [ A_t[subsample_correlated_data(A_t, g=g)] for A_t in A_kt ] # A_kn[k] is uncorrelated subset of trajectory A_kt[t]
>>> # Concatenate data into one timeseries.
>>> A_n = np.zeros([N], np.float32) # A_n[n] is nth sample in concatenated set of uncorrelated samples
>>> A_n[0:N_k[0]] = A_kn[0]
>>> for k in range(1,K): A_n[N_k[0:k].sum():N_k[0:k+1].sum()] = A_kn[k]













            

          

      

      

    

  

    
      
          
            
  
Utilities : pymbar.utils

These functions are some miscellaneous functions used by other parts of the pymbar library.


	
exception pymbar.utils.BoundsError

	Could not determine bounds on free energy






	
exception pymbar.utils.ConvergenceError

	Convergence could not be achieved.






	
exception pymbar.utils.DataError

	Data is inconsistent.






	
exception pymbar.utils.ParameterError

	An error in the input parameters has been detected.






	
exception pymbar.utils.TypeCastPerformanceWarning

	




	
pymbar.utils.check_w_normalized(W, N_k, tolerance=0.0001)

	Check the weight matrix W is properly normalized. The sum over N should be 1, and the sum over k by N_k should aslo be 1


	Parameters

	
	W (np.ndarray, shape=(N, K), dtype='float') – The normalized weight matrix for snapshots and states.
W[n, k] is the weight of snapshot n in state k.


	N_k (np.ndarray, shape=(K), dtype='int') – N_k[k] is the number of samples from state k.


	tolerance (float, optional, default=1.0e-4) – Tolerance for checking equality of sums






	Returns

	None – Returns a None object if test passes



	Return type

	NoneType



	Raises

	ParameterError – Appropriate message if W is not normalized within tolerance.










	
pymbar.utils.ensure_type(val, dtype, ndim, name, length=None, can_be_none=False, shape=None, warn_on_cast=True, add_newaxis_on_deficient_ndim=False)

	Typecheck the size, shape and dtype of a numpy array, with optional
casting.


	Parameters

	
	val ({np.ndaraay, None}) – The array to check


	dtype ({nd.dtype, str}) – The dtype you’d like the array to have


	ndim (int) – The number of dimensions you’d like the array to have


	name (str) – name of the array. This is used when throwing exceptions, so that
we can describe to the user which array is messed up.


	length (int, optional) – How long should the array be?


	can_be_none (bool) – Is val == None acceptable?


	shape (tuple, optional) – What should be shape of the array be? If the provided tuple has
Nones in it, those will be semantically interpreted as matching
any length in that dimension. So, for example, using the shape
spec (None, None, 3) will ensure that the last dimension is of
length three without constraining the first two dimensions


	warn_on_cast (bool, default=True) – Raise a warning when the dtypes don’t match and a cast is done.


	add_newaxis_on_deficient_ndim (bool, default=True) – Add a new axis to the beginining of the array if the number of
dimensions is deficient by one compared to your specification. For
instance, if you’re trying to get out an array of ndim == 3,
but the user provides an array of shape == (10, 10), a new axis will
be created with length 1 in front, so that the return value is of
shape (1, 10, 10).








Notes

The returned value will always be C-contiguous.


	Returns

	typechecked_val – If val=None and can_be_none=True, then this will return None.
Otherwise, it will return val (or a copy of val). If the dtype wasn’t right,
it’ll be casted to the right shape. If the array was not C-contiguous, it’ll
be copied as well.



	Return type

	np.ndarray, None










	
pymbar.utils.kln_to_kn(kln, N_k=None, cleanup=False)

	Convert KxKxN_max array to KxN max array


	Parameters

	
	u_kln (np.ndarray, float, shape=(KxLxN_max)) – 


	N_k (np.array, optional) – the N_k matrix from the previous formatting form


	cleanup (bool, optional) – optional command to clean up, since u_kln can get very large






	Returns

	u_kn



	Return type

	np.ndarray, float, shape=(LxN)










	
pymbar.utils.kn_to_n(kn, N_k=None, cleanup=False)

	Convert KxN_max array to N array


	Parameters

	
	u_kn (np.ndarray, float, shape=(KxN_max)) – 


	N_k (np.array, optional) – the N_k matrix from the previous formatting form


	cleanup (bool, optional) – optional command to clean up, since u_kln can get very large






	Returns

	u_n



	Return type

	np.ndarray, float, shape=(N)










	
pymbar.utils.logsumexp(a, axis=None, b=None, use_numexpr=True)

	Compute the log of the sum of exponentials of input elements.


	Parameters

	
	a (array_like) – Input array.


	axis (None or int, optional, default=None) – Axis or axes over which the sum is taken. By default axis is None,
and all elements are summed.


	b (array-like, optional) – Scaling factor for exp(a) must be of the same shape as a or
broadcastable to a.


	use_numexpr (bool, optional, default=True) – If True, use the numexpr library to speed up the calculation, which
can give a 2-4X speedup when working with large arrays.






	Returns

	res – The result, log(sum(exp(a))) calculated in a numerically
more stable way. If b is given then log(sum(b*exp(a)))
is returned.



	Return type

	ndarray






See also

numpy.logaddexp, numpy.logaddexp2, scipy.special.logsumexp



Notes

This is based on scipy.special.logsumexp but with optional numexpr
support for improved performance.
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