Utilities : pymbar.utils
¶
These functions are some miscellaneous functions used by other parts of the pymbar
library.
- exception pymbar.utils.BoundsError¶
Could not determine bounds on free energy
- exception pymbar.utils.ConvergenceError¶
Convergence could not be achieved.
- exception pymbar.utils.DataError¶
Data is inconsistent.
- exception pymbar.utils.ParameterError¶
An error in the input parameters has been detected.
- exception pymbar.utils.TypeCastPerformanceWarning¶
- pymbar.utils.check_w_normalized(W, N_k, tolerance=0.0001)¶
Check the weight matrix W is properly normalized. The sum over N should be 1, and the sum over k by N_k should aslo be 1
- Parameters
W (np.ndarray, shape=(N, K), dtype='float') – The normalized weight matrix for snapshots and states. W[n, k] is the weight of snapshot n in state k.
N_k (np.ndarray, shape=(K), dtype='int') – N_k[k] is the number of samples from state k.
tolerance (float, optional, default=1.0e-4) – Tolerance for checking equality of sums
- Returns
None – Returns a None object if test passes
- Return type
NoneType
- Raises
ParameterError – Appropriate message if W is not normalized within tolerance.
- pymbar.utils.ensure_type(val, dtype, ndim, name, length=None, can_be_none=False, shape=None, warn_on_cast=True, add_newaxis_on_deficient_ndim=False)¶
Typecheck the size, shape and dtype of a numpy array, with optional casting.
- Parameters
val ({np.ndaraay, None}) – The array to check
dtype ({nd.dtype, str}) – The dtype you’d like the array to have
ndim (int) – The number of dimensions you’d like the array to have
name (str) – name of the array. This is used when throwing exceptions, so that we can describe to the user which array is messed up.
length (int, optional) – How long should the array be?
can_be_none (bool) – Is
val == None
acceptable?shape (tuple, optional) – What should be shape of the array be? If the provided tuple has Nones in it, those will be semantically interpreted as matching any length in that dimension. So, for example, using the shape spec
(None, None, 3)
will ensure that the last dimension is of length three without constraining the first two dimensionswarn_on_cast (bool, default=True) – Raise a warning when the dtypes don’t match and a cast is done.
add_newaxis_on_deficient_ndim (bool, default=True) – Add a new axis to the beginining of the array if the number of dimensions is deficient by one compared to your specification. For instance, if you’re trying to get out an array of
ndim == 3
, but the user provides an array ofshape == (10, 10)
, a new axis will be created with length 1 in front, so that the return value is of shape(1, 10, 10)
.
Notes
The returned value will always be C-contiguous.
- Returns
typechecked_val – If val=None and can_be_none=True, then this will return None. Otherwise, it will return val (or a copy of val). If the dtype wasn’t right, it’ll be casted to the right shape. If the array was not C-contiguous, it’ll be copied as well.
- Return type
np.ndarray, None
- pymbar.utils.kln_to_kn(kln, N_k=None, cleanup=False)¶
Convert KxKxN_max array to KxN max array
- Parameters
u_kln (np.ndarray, float, shape=(KxLxN_max)) –
N_k (np.array, optional) – the N_k matrix from the previous formatting form
cleanup (bool, optional) – optional command to clean up, since u_kln can get very large
- Returns
u_kn
- Return type
np.ndarray, float, shape=(LxN)
- pymbar.utils.kn_to_n(kn, N_k=None, cleanup=False)¶
Convert KxN_max array to N array
- Parameters
u_kn (np.ndarray, float, shape=(KxN_max)) –
N_k (np.array, optional) – the N_k matrix from the previous formatting form
cleanup (bool, optional) – optional command to clean up, since u_kln can get very large
- Returns
u_n
- Return type
np.ndarray, float, shape=(N)
- pymbar.utils.logsumexp(a, axis=None, b=None, use_numexpr=True)¶
Compute the log of the sum of exponentials of input elements.
- Parameters
a (array_like) – Input array.
axis (None or int, optional, default=None) – Axis or axes over which the sum is taken. By default axis is None, and all elements are summed.
b (array-like, optional) – Scaling factor for exp(a) must be of the same shape as a or broadcastable to a.
use_numexpr (bool, optional, default=True) – If True, use the numexpr library to speed up the calculation, which can give a 2-4X speedup when working with large arrays.
- Returns
res – The result,
log(sum(exp(a)))
calculated in a numerically more stable way. If b is given thenlog(sum(b*exp(a)))
is returned.- Return type
ndarray
See also
numpy.logaddexp
,numpy.logaddexp2
,scipy.special.logsumexp
Notes
This is based on
scipy.special.logsumexp
but with optional numexpr support for improved performance.